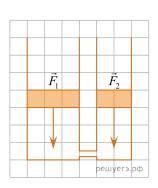

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

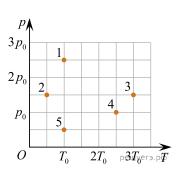
1. Единицей периода обращения в СИ является:

2. Если кинематические законы прямолинейного движения тел вдоль оси Ox имеют вид: $x_1(t) = A + Bt$, где A = 10 м, B = 1,2 м/с, и $x_2(t) = C + Dt$, где C = 45 м, D = -2,3 м/с, то тела встретятся в момент времени t, равный:

3. На рисунке представлен график зависимости координаты y тела, брошенного вертикально вверх с высоты h_0 , от времени t. Укажите правильное соотношение для модулей скоростей тела в точках A и B.


1)
$$v_B = 9v_A$$
 2) $v_B = 3\sqrt{3}v_A$ 3) $v_B = 3v_A$ 4) $v_B = \sqrt{3}v_A$ 5) $v_B = \sqrt{2}v_A$

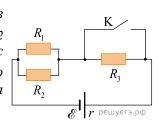
4. Модуль скорости движения v_1 первого тела массой m_1 в два раза больше модуля скорости движения v_2 второго тела массой m_2 . Если кинетические энергии этих тел равны ($E_{k1} = E_{k2}$), то отношение массы второго тела к массе первого тела равно:


1)
$$\frac{1}{2}$$
 2) 1 3) $\sqrt{2}$ 4) 2 5) 4

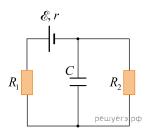
5. Цепь массой m=2,0 кг и длиной l=1,0 м, лежащую на гладком горизонтальном столе, поднимают за один конец. Минимальная работа A_{min} по подъему цепи, при котором она перестанет оказывать давление на стол, равна:

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поринями, которые могут перемещаться без трения. К пориням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы $F_1=18$ H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:

7. На p-T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией n_{max} молекул газа обозначено цифрой:

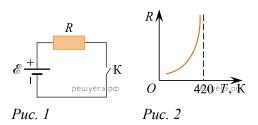

8. Если при изобарном нагревании идеального газа, начальная температура которого $t_1 = 7,0^{\circ}C$, его объём увеличился в k = 1,2 раза, то конечная температура t_2 газа равна:

- 9. С идеальным газом, количество вещества которого постоянно, проводят изотермический процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, давление газа увеличивается
 - 2) к газу подводят теплоту, давление газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, давление газа увеличивается
 - 4) теплота не подводится к газу и не отводится от него, давление газа уменьшается
 - 5) теплота отводится от газа, давление газа уменьшается
- **10.** Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, $m = 18.2 \cdot 10^{-20}$ кг, то заряд палочки q равен:


1)
$$-24$$
 нКл 2) -26 нКл 3) -28 нКл 4) -30 нКл 5) -32 нКл

- 11. С башни в горизонтальном направлении бросили камень, который упал на землю на расстоянии s=14,4 м от основания башни. Если непосредственно перед падением на землю скорость камня была направлена под углом $\alpha=45^\circ$ к горизонту, то модуль начальной скорости v_0 камня был равен ... м/с.
- 12. С помощью подъёмного механизма груз массой m = 0.80 т равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени Δt после начала подъёма груз находился на высоте h = 30 м, продолжая движение. Если сила тяги подъёмного механизма к этому моменту времени совершила работу A = 0.25 МДж, то промежуток времени Δt равен ... с.
- 13. На гидроэлектростанции вода падает с высоты h=54 м. Если коэффициент полезного действия электростанции $\eta=72~\%$, а её полезная мощность $P_{\text{полезн}}=84~\text{MBm}$, то масса т воды, падающей ежесекундно равна ... **т**.
- 14. Два маленьких шарика массами $m_1=32$ г и $m_2=16$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l=99 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha=60^\circ$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое, то максимальная высота h_{max} на которую они поднялись равна ... см.
- 15. Зависимость координаты х пружинного маятника, совершающего колебания вдоль горизонтальной оси Ох, от времени t имеет вид $x(t) = A\sin(\omega t + \phi_0)$, где $\omega = \frac{17\pi}{18}~{\rm pag/c}$, $\phi_0 = \frac{2\pi}{9}~{\rm pag}$. Если в момент времени t = 1.0~c потенциальная энергия пружины $E_{\rm II} = 9.0~{\rm M}$ Дж, то полная механическая энергия E маятника равна ... мДж.

- **16.** Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если вода $(c=4,2\frac{\mathrm{K}\square\mathrm{K}}{\mathrm{K}\Gamma\cdot{}^{\circ}\mathrm{C}})$ массой m=0,20 кг нагрелась от температуры $t_1=20~{}^{\circ}\mathrm{C}$ до температуры $t_2=100~{}^{\circ}\mathrm{C}$ за промежуток $\Delta \tau=80~\mathrm{C}$, то коэффициент полезного действия η печи равен ... %.
- 17. В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в четыре раза больше минимального, а максимальный объём газа в n = 2,5 раза больше минимального. Коэффициент полезного действия η цикла равен ... %.
- 18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=8,00~{\rm OM},~R_3=4,00~{\rm OM}.$ По цепи в течение промежутка времени $t=25,0~{\rm c}$ проходит электрический ток. Если ЭДС источника тока $\varepsilon=18,0~{\rm B},~a$ его внутреннее сопротивление $r=2,00~{\rm OM},$ то полезная работа $A_{\rm полезн}$. тока на внешнем участке цепи при замкнутом ключе K равна ... Дж.


19. Электрическая цепь состоит из источника постоянного тока с ЭДС $\varepsilon=70$ В, конденсатора ёмкостью C=7,0 мкФ и двух резисторов, сопротивления которых $R_1=R_2=60$ Ом (см. рис.). Если заряд конденсатора q=210 мкКл, то внутреннее сопротивление источника r равно ... Ом.

- **20.** Тонкое проволочное кольцо радиусом r=4,0 см и массой m=98,6 мг, изготовленное из проводника сопротивлением R=0,40 Ом, находится в неоднородном магнитном поле, проекция индукции которого на ось Ох имеет вид $B_x=kx$, где k=4,0 Тл/м, x— координата. В направлении оси Ох кольцу ударом сообщили скорость, модуль которой $v_0=4,0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ох, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **21.** Квадратная рамка изготовлена из тонкой однородной проволоки. Сопротивление рамки, измеренное между точками A и B (см. рис.), $R_{AB}=1.0$ Ом. Если рамку поместить в магнитное поле, то при равномерном изменении магнитного потока от $\Phi_1=39$ мBб до $\Phi_2=15$ мBб через поверхность, ограниченную рамкой, за время $\Delta t=100$ мС сила тока I в рамке будет равна ... мA.

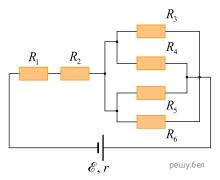
22. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon = 10~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно становится при $T \geqslant 420~\mathrm{K}$ (см. рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\text{Дж}}{\text{кг}\cdot\text{K}}$, масса резистора m=2,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~\text{K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Kл.

23. На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{A}{c}$. В момент времени $t_1=10$ c тепловая мощность P, выделяемая в резисторе, равна ... Bm.

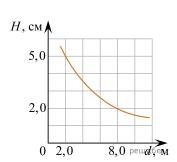

26. Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \, O_{M}.$$

В резисторе R_6 выделяется тепловая мощность $P_6 = 90,0$ Вт. Если внутреннее сопротивление источника тока r = 4,00 Ом, то ЭДС \mathcal{E} источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции В магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

